Short Communications

Association of Ammonium Bromide in Acetone

G. WIKANDER, A.-M. NILSSON, A. HOLMGREN and P. BERONIUS

Division of Physical Chemistry, University of Umeå, S-901 87 Umeå, Sweden

A mmonium bromide shows considerable ion-pair formation in anhydrous acetone even at high dilutions. For an electrolyte concentration of 1×10^{-4} M more than 50 % of the ions are associated into ion-pairs. This conclusion rests upon measurements of electrolytic conductivity performed in connection with a kinetic investigation.¹

In the present communication conductivity data at 25° C over a concentration range of 3×10^{-5} to 2×10^{-4} M for the salt

are reported.

Reagents. Ammonium bromide (Carlo Erba, pro analysi) was dried at 110°C for 2 h. Acetone with an electrolytic conductivity of less than $1.5 \times 10^{-8} \ \Omega^{-1} \ \mathrm{cm}^{-1}$ was prepared from pro analysi acetone (Merck) according to Ref. 2.

Conductivity measurements. Determinations of electrolytic conductivity at 25.00 ± 0.01°C were performed using a Leeds and Northrup 4666 conductivity bridge as described in Ref. 3. Corrections for the electrolytic conductivity of the solvent were applied.

Results. Molar conductivities, Λ , at different salt concentrations, c, are quoted in Table 1. A maximum ammonium bromide concentration of 2×10^{-4} M was used because of the limited solubility of this salt in the solvent concerned.

The ion-pair association constant, $K_{\rm A}$, and the molar conductivity at infinite dilution, Λ_0 , were calculated from the data in Table 1 by means of the Shedlovsky

Table 1. Molar conductivities of ammonium bromide in acetone at 25°C.

c×10 ⁴ M	$\Omega^{-1} \operatorname{em^2 mol^{-1}}$	$c \times 10^4$ M	$\Omega^{-1} \operatorname{cm}^2 \operatorname{mol}^{-1}$
Run A		Run B	
2.043	62.77	2.055	62.61
0.8209	86.94	0.8478	85.38
0.6560	94.38	0.6207	95.68
0.5893	97.83	0.5238	101.94
0.4217	108.89	0.4318	107.47
0.3275	117.36	0.3816	111.68

method according to a computer programme previously described. The permittivity, $\varepsilon=20.7$, and the viscosity, $\eta=0.00316$ P (1 P=10⁻¹ kg m⁻¹ s⁻¹), for the solvent were used. For the ion-size parameter, $\mathring{a}=1.48+1.95=3.43$ Å, cf. Ref. 5, this procedure yielded $K_A=32~860\pm430$ M⁻¹ and $\Lambda_0=190.9\pm2.8~\Omega^{-1}$ cm² mol⁻¹, where uncertainties quoted are standard deviations.

Acknowledgement. The authors thank the Swedish Natural Science Research Council for financial support.

- Beronius, P., Holmgren, A., Nilsson, A.-M. and Wikander, G. Radiochem. Radioanal. Letters 5 (1970) 131.
- Smith, S. G., Fainberg, A. H. and Winstein, S. J. Am. Chem. Soc. 83 (1961) 618.
- Nilsson, A.-M., Wikander, G. and Beronius, P. Acta Chem. Scand. 24 (1970) 1175.
- Beronius, P. Acta Chem. Scand. 23 (1969) 1175.
- Robinson, R. A. and Stokes, R. H. Electrolyte Solutions, Butterworths, London 1959, p. 461.

Received March 17, 1971.